Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.

Identifieur interne : 000547 ( Main/Exploration ); précédent : 000546; suivant : 000548

Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.

Auteurs : J. Hoppe [Allemagne] ; X. Zhang [République populaire de Chine] ; F M Thomas [Allemagne]

Source :

RBID : pubmed:31507060

Descripteurs français

English descriptors

Abstract

Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper-)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from 'root suckers' that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests. In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (kc ) from anatomical investigations on the basis of a modified Hagen-Poiseuille equation and measured it (km ) with a perfusion solution in the laboratory. The km values were compared with the water use by young and mature P. euphratica trees determined in previous studies. We obtained a significant correlation between km and kc (which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither kc nor km increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees. Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.

DOI: 10.1111/plb.13042
PubMed: 31507060


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.</title>
<author>
<name sortKey="Hoppe, J" sort="Hoppe, J" uniqKey="Hoppe J" first="J" last="Hoppe">J. Hoppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier</wicri:regionArea>
<wicri:noRegion>Trier</wicri:noRegion>
<orgName type="university">Université de Trèves</orgName>
<placeName>
<settlement type="city">Trèves (Allemagne)</settlement>
<region type="land" nuts="1">Rhénanie-Palatinat</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, X" sort="Zhang, X" uniqKey="Zhang X" first="X" last="Zhang">X. Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi</wicri:regionArea>
<wicri:noRegion>Urumqi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thomas, F M" sort="Thomas, F M" uniqKey="Thomas F" first="F M" last="Thomas">F M Thomas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier</wicri:regionArea>
<wicri:noRegion>Trier</wicri:noRegion>
<orgName type="university">Université de Trèves</orgName>
<placeName>
<settlement type="city">Trèves (Allemagne)</settlement>
<region type="land" nuts="1">Rhénanie-Palatinat</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31507060</idno>
<idno type="pmid">31507060</idno>
<idno type="doi">10.1111/plb.13042</idno>
<idno type="wicri:Area/Main/Corpus">000715</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000715</idno>
<idno type="wicri:Area/Main/Curation">000715</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000715</idno>
<idno type="wicri:Area/Main/Exploration">000715</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.</title>
<author>
<name sortKey="Hoppe, J" sort="Hoppe, J" uniqKey="Hoppe J" first="J" last="Hoppe">J. Hoppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier</wicri:regionArea>
<wicri:noRegion>Trier</wicri:noRegion>
<orgName type="university">Université de Trèves</orgName>
<placeName>
<settlement type="city">Trèves (Allemagne)</settlement>
<region type="land" nuts="1">Rhénanie-Palatinat</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, X" sort="Zhang, X" uniqKey="Zhang X" first="X" last="Zhang">X. Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi</wicri:regionArea>
<wicri:noRegion>Urumqi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thomas, F M" sort="Thomas, F M" uniqKey="Thomas F" first="F M" last="Thomas">F M Thomas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier</wicri:regionArea>
<wicri:noRegion>Trier</wicri:noRegion>
<orgName type="university">Université de Trèves</orgName>
<placeName>
<settlement type="city">Trèves (Allemagne)</settlement>
<region type="land" nuts="1">Rhénanie-Palatinat</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biology (Stuttgart, Germany)</title>
<idno type="eISSN">1438-8677</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China (MeSH)</term>
<term>Desert Climate (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chine (MeSH)</term>
<term>Climat désertique (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Desert Climate</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chine</term>
<term>Climat désertique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper-)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from 'root suckers' that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests. In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (k
<sub>c</sub>
) from anatomical investigations on the basis of a modified Hagen-Poiseuille equation and measured it (k
<sub>m</sub>
) with a perfusion solution in the laboratory. The k
<sub>m</sub>
values were compared with the water use by young and mature P. euphratica trees determined in previous studies. We obtained a significant correlation between k
<sub>m</sub>
and k
<sub>c</sub>
(which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither k
<sub>c</sub>
nor k
<sub>m</sub>
increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees. Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31507060</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-8677</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant biology (Stuttgart, Germany)</Title>
<ISOAbbreviation>Plant Biol (Stuttg)</ISOAbbreviation>
</Journal>
<ArticleTitle>Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.</ArticleTitle>
<Pagination>
<MedlinePgn>38-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/plb.13042</ELocationID>
<Abstract>
<AbstractText>Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper-)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from 'root suckers' that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests. In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (k
<sub>c</sub>
) from anatomical investigations on the basis of a modified Hagen-Poiseuille equation and measured it (k
<sub>m</sub>
) with a perfusion solution in the laboratory. The k
<sub>m</sub>
values were compared with the water use by young and mature P. euphratica trees determined in previous studies. We obtained a significant correlation between k
<sub>m</sub>
and k
<sub>c</sub>
(which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither k
<sub>c</sub>
nor k
<sub>m</sub>
increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees. Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Society for Plant Sciences, Royal Botanical Society of the Netherlands.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hoppe</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>X</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>F M</ForeName>
<Initials>FM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3697-714X</Identifier>
<AffiliationInfo>
<Affiliation>Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>01LL0918K</GrantID>
<Agency>German Federal Ministry of Education and Research</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biol (Stuttg)</MedlineTA>
<NlmUniqueID>101148926</NlmUniqueID>
<ISSNLinking>1435-8603</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003889" MajorTopicYN="N">Desert Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="Y">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Euphrates poplar</Keyword>
<Keyword MajorTopicYN="N">hydraulic conductance</Keyword>
<Keyword MajorTopicYN="N">root anatomy</Keyword>
<Keyword MajorTopicYN="N">vessel</Keyword>
<Keyword MajorTopicYN="N">water flux</Keyword>
<Keyword MajorTopicYN="N">xylem</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31507060</ArticleId>
<ArticleId IdType="doi">10.1111/plb.13042</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Atkinson C.J., Else M.A. (2012) Hydraulic conductivity and PAT determine hierarchical resource partitioning and ramet development along Fragaria stolons. Journal of Experimental Botany, 63, 5093-5104.</Citation>
</Reference>
<Reference>
<Citation>Ayup M., Chen Y.-N., Nyongesah M.J., Zhang Y.-M., Rajput V.D., Zhu C.-G. (2015) Xylem anatomy and hydraulic traits of two co-occurring riparian desert plants. IAWA Journal, 36, 69-83.</Citation>
</Reference>
<Reference>
<Citation>Bellingham P.J., Sparrow A.D. (2000) Resprouting as a life history strategy in woody plant communities. Oikos, 89, 409-416.</Citation>
</Reference>
<Reference>
<Citation>Bruelheide H., Manegold M., Jandt U. (2004) The genetic structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan Desert. In: Runge M., Zhang X. (Eds), Ecophysiology and habitat requirements of perennial plant species in the Taklimakan Desert. Shaker, Aachen, Germany, pp 153-160.</Citation>
</Reference>
<Reference>
<Citation>Bruus H. (2009) Theoretical microfluidics, 2nd edn. Oxford University Press, Oxford, UK.</Citation>
</Reference>
<Reference>
<Citation>Castilla A.R., Godoy J.A., Delibes M., Rodriguez-Prieto A., Fedriani J.M. (2019) Microgeographical variation in recruitment under adult trees: arrival of new genotypes or perpetuation of the existing ones? Plant Biology, 21, 695-705.</Citation>
</Reference>
<Reference>
<Citation>Chalk L. (1983) Roots of woody plants. In: Metcalfe C. R., Chalk L. (Eds), Anatomy of the dicotyledons, vol. II, 2nd edn. Clarendon Press, Oxford, UK, pp 47-51.</Citation>
</Reference>
<Reference>
<Citation>Chen Y., Chen Y., Xu C., Ye Z., Li Z., Zhu C., Ma X. (2010) Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrological Processes, 24, 170-177.</Citation>
</Reference>
<Reference>
<Citation>Chen Y.N., Li W.H., Xu C.C., Ye Z.X., Chen Y.P. (2015) Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environmental Earth Sciences, 73, 547-558.</Citation>
</Reference>
<Reference>
<Citation>Chen D., Xiong H., Lin C.-G., He W., Zhang Z.-W., Wang H., Wang Y.-J. (2018) Clonal integration benefits invasive alien plants under water variability in a native community. Journal of Plant Ecology, 12, 574-582.</Citation>
</Reference>
<Reference>
<Citation>Crawford R.M.M. (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, Cambridge, UK.</Citation>
</Reference>
<Reference>
<Citation>Cremer K.W. (2003) Introduced willows can become invasive pests in Australia. Biodiversity, 4, 17-24.</Citation>
</Reference>
<Reference>
<Citation>Cui Y., Shao J. (2005) The role of groundwater in arid/semiarid ecosystems, Northwest China. Groundwater, 43, 471-477.</Citation>
</Reference>
<Reference>
<Citation>De Kroon H., Fransen B., van Rheenen J.W.A., van Dijk A., Kreulen R. (1996) High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia, 106, 73-84.</Citation>
</Reference>
<Reference>
<Citation>De Kroon H., van der Zalm E., van Rheenen J.W.A., van Dijk A., Kreulen R. (1998) The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia, 116, 38-49.</Citation>
</Reference>
<Reference>
<Citation>Dettmann S., Pérez C.A., Thomas F.M. (2013) Xylem anatomy and calculated hydraulic conductance of four Nothofagus species with contrasting distribution in South-Central Chile. Trees, 27, 685-696.</Citation>
</Reference>
<Reference>
<Citation>Dietrich L., Hoch G., Kahmen A., Körner C. (2018) Losing half the conductive area hardly impacts the water status of mature trees. Scientific Reports, 8, 15006.</Citation>
</Reference>
<Reference>
<Citation>Dietz H., Steinlein T. (2001) Ecological aspects of clonal growth in plants. In: Esser K., Lüttge U., Kadereit J. W., Beyschlag W. (Eds), Progress in botany Vol 62. Springer, Berlin, Germany, pp 511-520.</Citation>
</Reference>
<Reference>
<Citation>Douhovnikoff V., McBride J.R., Dodd R.S. (2005) Salix exigua clonal growth and population dynamics in relation to distribution regime variation. Ecology, 86, 446-452.</Citation>
</Reference>
<Reference>
<Citation>Eusemann P., Petzold A., Thevs N., Schnittler M. (2013) Growth patterns and genetic structure of Populus euphratica Oliv. (Salicaceae) forests in NW China - Implications for conservation and management. Forest Ecology and Management, 297, 27-36.</Citation>
</Reference>
<Reference>
<Citation>Falster D., Warton D., Wright I. (2006) SMATR: Standardised major axis tests and routines, version 2.0. Available from https://github.com/dfalster/smatr/ (accessed 21 February 2019).</Citation>
</Reference>
<Reference>
<Citation>Fan B., Zhao C., Zhang X., Sun K. (2018) Impacts of sand burial and wind erosion on regeneration and growth of a desert clonal shrub. Frontiers in Plant Science, 9, 1696.</Citation>
</Reference>
<Reference>
<Citation>Foetzki A. (2003) Wasserhaushalt und Wassernutzungseffizienz von vier perennierenden Pflanzenarten im Vorland einer zentralasiatischen Flussoase. Berichte des Forschungszentrums Waldökosysteme, Reihe A, Band 186. Forschungszentrum Waldökosysteme der Universität Göttingen, Göttingen, Germany.</Citation>
</Reference>
<Reference>
<Citation>Gieger T., Thomas F.M. (2002) Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea. Basic and Applied Ecology, 3, 171-181.</Citation>
</Reference>
<Reference>
<Citation>Granier A., Biron P., Bréda N., Pontailler J.Y., Saugier B. (1996) Transpiration of trees and forest stands: short- and long-term monitoring using sapflow methods. Global Change Biology, 2, 265-274.</Citation>
</Reference>
<Reference>
<Citation>Gries D., Foetzki A., Arndt S.K., Bruelheide H., Thomas F.M., Zhang X., Runge M. (2005) Production of perennial vegetation in an oasis-desert transition zone in NW China - allometric estimation, and assessment of flooding and use effects. Plant Ecology, 181, 23-43.</Citation>
</Reference>
<Reference>
<Citation>Halik Ü., Aishan T., Betz F., Kurban A., Rouzi A. (2019) Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China's largest inland river. Ecological Engineering, 127, 11-22.</Citation>
</Reference>
<Reference>
<Citation>Hukin D., Cochard H., Dreyer E., Le Thiec D., Bogeat-Triboulot M.B. (2005) Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? Journal of Experimental Botany, 56, 2003-2010.</Citation>
</Reference>
<Reference>
<Citation>Jacobsen A.L., Valdovinos-Ayala J., Rodriguez-Zaccaro F.D., Hill-Crim M.A., Percolla M.I., Venturas M.D. (2018) Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees, 32, 1335-1346.</Citation>
</Reference>
<Reference>
<Citation>Jeník J. (1994) Clonal growth in woody plants: a review. Folia Geobotanica, 29, 291-306.</Citation>
</Reference>
<Reference>
<Citation>Karrenberg S., Edwards P.J., Kollmann J. (2002) The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47, 733-748.</Citation>
</Reference>
<Reference>
<Citation>Keyimu M., Halik Ü., Kurban A. (2017) Estimation of water consumption of riparian forest in the lower reaches of Tarim River, northwest China. Environmental Earth Sciences, 76, 547.</Citation>
</Reference>
<Reference>
<Citation>Klimeš L., Klimešová J., Hendriks R., van Groenendaal J. (1997) Clonal plant architecture: a comparative analysis of form and function. In: De Kroon H., van Groenendael J. (Eds), The ecology and evolution of clonal plants. Backhuys, Leiden, The Netherlands, pp 1-29.</Citation>
</Reference>
<Reference>
<Citation>Kramp K., Schmitt T., Lang P., Jeschke M., Schäfer P., Kulanek D., Zhang X., Yu R., Thomas F.M. (2018) Clones or no clones: genetic structure of riparian Populus euphratica forests in Central Asia. Journal of Arid Land, 10, 750-766.</Citation>
</Reference>
<Reference>
<Citation>Landa K., Benner B., Watson M.A., Gartner J. (1992) Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos, 63, 348-356.</Citation>
</Reference>
<Reference>
<Citation>Lang P., Ahlborn J., Schäfer P., Wommelsdorf T., Jeschke M., Zhang X., Thomas F.M. (2016) Growth and water use of Populus euphratica trees and stands with different water supply along the Tarim River, NW China. Forest Ecology and Management, 380, 139-148.</Citation>
</Reference>
<Reference>
<Citation>Ling H.B., Zhang P., Xu H.L., Zhao X.F. (2015) How to regenerate and protect desert riparian Populus euphratica forest in arid areas. Scientific Reports, 5, 15418.</Citation>
</Reference>
<Reference>
<Citation>Lu P., Urban L., Zhao P. (2004) Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica, 46, 631-646.</Citation>
</Reference>
<Reference>
<Citation>Metcalfe C.R., Chalk L. (1983) Anatomy of the dicotyledons, Vol. II, 2nd edn. Clarendon Press, Oxford, UK.</Citation>
</Reference>
<Reference>
<Citation>Mogie M., Hutchings M.J. (1990) Phylogeny, ontogeny and clonal growth in vascular plants. In: van Groenendael J., de Kroon H. (Eds), Clonal growth in plants: regulation and function. SPB Academic, The Hague, The Netherlands, pp 3-22.</Citation>
</Reference>
<Reference>
<Citation>Otsu N. (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66.</Citation>
</Reference>
<Reference>
<Citation>Pan J.J., Price J.S. (2002) Fitness and evolution in clonal plants: the impact of clonal growth. Evolutionary Ecology, 15, 583-600.</Citation>
</Reference>
<Reference>
<Citation>Rasband W. (1997) ImageJ documentation (online). National Institutes of Health, Bethesda, MD, USA. http://rsb.info.nih.gov/ij/docs/index.html (accessed 2 May 2019).</Citation>
</Reference>
<Reference>
<Citation>Reisch C., Schurm S., Poschlod P. (2007) Spatial genetic structure and clonal diversity in an alpine population of Salix herbacea (Salicaceae). Annals of Botany, 99, 647-651.</Citation>
</Reference>
<Reference>
<Citation>Rzepecki A., Zeng F., Thomas F.M. (2011) Xylem anatomy and hydraulic conductivity of three co-occurring desert phreatophytes. Journal of Arid Environments, 75, 338-345.</Citation>
</Reference>
<Reference>
<Citation>Santini N., Cleverly J., Faux R., McBean K., Nolan R., Eamus D. (2018) Root xylem characteristics and hydraulic strategies of species co-occurring in semi-arid Australia. IAWA Journal, 39, 43-62.</Citation>
</Reference>
<Reference>
<Citation>Sardans J., Peñuelas J. (2014) Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology, 7, 1-20.</Citation>
</Reference>
<Reference>
<Citation>Schulze E.-D., Caldwell M.M., Canadell J., Mooney H.A., Jackson R.B., Parson D., Scholes R., Sala O.E., Trimborn P. (1998) Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia, 115, 460-462.</Citation>
</Reference>
<Reference>
<Citation>Schweingruber F.H. (2007) Wood structure and environment. Springer, Berlin, Germany.</Citation>
</Reference>
<Reference>
<Citation>Sperry J.S., Saliendra N.Z. (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 17, 1233-1241.</Citation>
</Reference>
<Reference>
<Citation>Sperry J.S., Donnelly J.R., Tyree M.T. (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11, 35-40.</Citation>
</Reference>
<Reference>
<Citation>Stuefer J.F., During H.J., Schieving F. (1998) A model on optimal root-shoot allocation and water transport in clonal plants. Ecological Modelling, 111, 171-186.</Citation>
</Reference>
<Reference>
<Citation>Thevs N., Zerbe S., Peper J., Succow M. (2008) Vegetation and vegetation dynamics in the Tarim River floodplain of continental-arid Xinjiang, NW China. Phytocoenologia, 38, 65-84.</Citation>
</Reference>
<Reference>
<Citation>Thomas F.M. (2014) Ecology of phreatophytes. In: Lüttge U., Beyschlag W., Cushman J. (Eds), Progress in botany 75. Springer, New York, USA, pp 335-375.</Citation>
</Reference>
<Reference>
<Citation>Thomas F.M., Arndt S.K., Bruelheide H., Foetzki A., Gries D., Huang J., Popp M., Wang G., Zhang X.M., Runge M. (2000) Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian desert: presentation and first results. Journal of Applied Botany - Angewandte Botanik, 74, 212-219.</Citation>
</Reference>
<Reference>
<Citation>Thomas F.M., Foetzki A., Gries D., Bruelheide H., Li X., Zeng F., Zhang X. (2008) Regulation of the water status in three co-occurring phreatophytes at the southern fringe of the Taklamakan Desert. Journal of Plant Ecology, 1, 227-235.</Citation>
</Reference>
<Reference>
<Citation>Thomas F.M., Jeschke M., Zhang X., Lang P. (2017) Stand structure and productivity of Populus euphratica along a gradient of groundwater distances at the Tarim River (NW China). Journal of Plant Ecology, 10, 753-764.</Citation>
</Reference>
<Reference>
<Citation>Thomas L.K., Tölle L., Ziegenhagen B., Leyer I. (2012) Are vegetative reproduction capacities the cause of widespread invasion of Eurasian Salicaceae in Patagonian river landscapes? PLoS ONE, 7, e50652.</Citation>
</Reference>
<Reference>
<Citation>Thorburn P.J., Walker G.R. (1994) Variations in stream water uptake by Eucalyptus camaldulensis with differing access to stream water. Oecologia, 100, 293-301.</Citation>
</Reference>
<Reference>
<Citation>Tyree M.T. (2003) Hydraulic properties of roots. In: De Kroon H., Visser E. J. W. (Eds), Root ecology. Springer, Berlin, Germany, pp 125-150.</Citation>
</Reference>
<Reference>
<Citation>Vonlanthen B., Zhang X., Bruelheide H. (2010) Clonal structure and genetic diversity of three desert phreatophytes. American Journal of Botany, 97, 234-242.</Citation>
</Reference>
<Reference>
<Citation>Walter H., Box E.O. (1983) Middle Asian deserts. In: West N. E. (Ed), Ecosystems of the world, Vol. 5: temperate deserts and semi-deserts, Elsevier, Amsterdam, The Netherlands, pp 79-104.</Citation>
</Reference>
<Reference>
<Citation>Warton D.I., Wright I.J., Falster D.S., Westoby M. (2006) Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.</Citation>
</Reference>
<Reference>
<Citation>Watson M.A., Casper B.B. (1984) Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics, 15, 233-258.</Citation>
</Reference>
<Reference>
<Citation>Wiehle M., Eusemann P., Thevs N., Schnittler M. (2009) Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae). Trees, 23, 991-1001.</Citation>
</Reference>
<Reference>
<Citation>Xia X., Li C., Zhou X., Zhang H., Huang P., Pan B. (1993) Desertification and control of blown sand disasters in Xinjiang. Science Press, Beijing, China.</Citation>
</Reference>
<Reference>
<Citation>Xu C., Chen Y., Li W., Chen Y. (2006) Climate change and hydrologic process response in the Tarim River Basin over the past 50 years. Chinese Science Bulletin, 51, 25-36.</Citation>
</Reference>
<Reference>
<Citation>Yu F.H., Wang N., He W.M., Chu Y., Dong M. (2008) Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Annals of Botany, 102, 571-577.</Citation>
</Reference>
<Reference>
<Citation>Zerbe S., Thevs N. (2011) Restoring Central Asian floodplain ecosystems as natural capital and cultural heritage in a continental desert environment. In: Hong S.-K., Wu J., Kim J.-E., Nakagoshi N. (Eds), Landscape ecology in Asian cultures. Springer, Berlin, Germany, pp 277-297.</Citation>
</Reference>
<Reference>
<Citation>Zhou H., Chen Y., Li W., Ayup M. (2013) Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of Northwest China. Ecohydrology, 6, 984-993.</Citation>
</Reference>
<Reference>
<Citation>Zhu C.G., Li W.H., Chen Y.N., Chen Y.P. (2018) Characteristics of water physiological integration and its ecological significance for Populus euphratica young ramets in an extremely drought environment. Journal of Geophysical Research: Atmospheres, 123, 5657-5666.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Rhénanie-Palatinat</li>
</region>
<settlement>
<li>Trèves (Allemagne)</li>
</settlement>
<orgName>
<li>Université de Trèves</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-Palatinat">
<name sortKey="Hoppe, J" sort="Hoppe, J" uniqKey="Hoppe J" first="J" last="Hoppe">J. Hoppe</name>
</region>
<name sortKey="Thomas, F M" sort="Thomas, F M" uniqKey="Thomas F" first="F M" last="Thomas">F M Thomas</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, X" sort="Zhang, X" uniqKey="Zhang X" first="X" last="Zhang">X. Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000547 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000547 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31507060
   |texte=   Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31507060" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020